Новости 06.02.2020

Физтехи разработали наноматериал для ДНК-диагностики

Физтехи разработали наноматериал для ДНК-диагностики
Елизавета Мочалова и Андрей Бабенышев, аспиранты лаборатории нанобиотехнологий МФТИ
Евгений Пелевин, пресс-служба МФТИ

Более ста лет человечество пытается создать «волшебную пулю», концепцию которой впервые предложил немецкий врач Пауль Эрлих. Идея проста: в организм вводят «умные» частицы, которые сами находят, распознают и сразу лечат болезнь. Над реализацией этой смелой идеи ученые бьются до сих пор.

В лаборатории нанобиотехнологий Московского физико-технического института совместно с исследователями из Института общей физики РАН продвинулись в решении этой задачи особенно далеко. В недавно вышедшей работе, опубликованной в журнале ACS Nano (IF = 13,903), группа российских авторов (без зарубежных аффилиаций) под руководством Максима Никитина представила уникальный по своим свойствам «умный» материал, который может быть использован как для экспресс-ДНК-анализа, так и для создания нового поколения средств лечения рака и других сложных заболеваний.

 

Доставка лекарств к пораженным клеткам организма на сегодняшний день является слабым звеном (узким «бутылочным горлышком») диагностики и терапии. В идеале лекарство должно попадать адресно — только в «больные» клетки, не нанося при этом никакого вреда здоровым. Отличить пораженную болезнью (например, раком) клетку от здоровой возможно по различным соединениям (маркерам) на ее поверхности или в ее микроокружении — продуктам жизнедеятельности или различным сигналам, передаваемым другим клеткам организма.

Существующие лекарства выделяют больные клетки по одному такому маркеру. Однако почти всегда маркеры больной клетки есть и на здоровых, только в меньшем количестве. Именно поэтому существующие системы адресной доставки несовершенны.

Для увеличения специфичности доставки лекарств необходимы «умные» (англ. «smart») материалы, способные анализировать сразу несколько параметров своего окружения и более точно находить мишень. «Общепринятые способы доставки лекарств напоминают письмо с указанием города и улицы, но без номера дома и квартиры, — комментирует руководитель исследования Максим Никитин— Для эффективной доставки нужно уметь анализировать больше параметров». В 2014 году в журнале Nature Nanotechnology Максимом Никитиным и его соавторами были опубликованы результаты работы, в которой они впервые наделили нано- и микрочастицы функцией производить любые логические вычисления с помощью биохимических реакций. Такие автономные нанокомпьютеры способны идентифицировать мишень намного лучше за счет анализа многих ее параметров.
За последние годы область подобных «биокомпьютинговых» материалов существенно развилась. В 2018 году, когда количество работ стало уже больше многих сотен, наиболее авторитетное научное издание в области нанотехнологий Chemical Reviews (IF = 54,301) опубликовало совместный обзор ученых из лаборатории нанобиотехнологий МФТИ и лаборатории биофотоники Института общей физики РАН на тему современного состояния в области наноробототехники и биокомпьютинга «Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots» («Передовые умные наноматериалы со встроенными возможностями выполнения логических операций и биокомпьютинга: на заре эпохи тераностических нанороботов»).

Несмотря на большое количество усилий, потраченное множеством исследовательских групп во всем мире для расширения функционала таких материалов, их главным слабым местом оставалась низкая чувствительность к маркерам заболеваний, что не позволяло планировать их реальные применения.

В нынешней работе российским ученым удалось сделать прорыв. Они разработали уникальный умный материал, который обладает сверхчувствительностью к ДНК-сигналам, не просто на несколько порядков превышающей чувствительность всех остальных материалов, но и лучшей, чем абсолютное большинство существующих экспресс-ДНК-тестов.

Добиться этого выдающегося результата исследователям помог обнаруженный ими феномен необычного поведения ДНК-молекул на поверхности наночастиц.

В процессе работы авторы пришивали молекулу одноцепочечной ДНК одним концом на поверхность наночастиц. Важно, что эта ДНК-молекула не имела двухцепочечных областей, образующихся за счет спаривания фрагментов своей же цепи (так называемых «шпилек»). На другой конец нити ДНК был пришит рецептор, распознающий маркеры на поверхности клеток. К удивлению исследователей, рецептор никак не хотел связываться с мишенью. И это не было ошибкой. Возникла гипотеза, что на поверхности наночастицы одноцепочечная нить ДНК «прилипает» к поверхности и самопроизвольно сворачивается в клубок, в результате чего рецептор «прячется» на поверхности наночастицы (см. рисунок 1). Гипотеза подтвердилась, когда к такой частице добавили другую небольшую нить ДНК, комплементарную к ДНК на наночастице, — рецептор мгновенно «активировался» и связывался с мишенью. За счет образования комплементарных пар между нуклеотидами две нити образовывали жесткую двойную спираль, или, как говорят ученые, дуплекс. В результате нить ДНК, подобно языку хамелеона, разворачивалась, и рецептор начинал узнавать клеточный маркер.

По материалам пресс-службы МФТИ

Наверх